

Arc-Flags & Trip-Based Routing

July 2023

Ernestine Großmann ¹ Jonas Sauer ² Christian Schulz ¹ Patrick Steil ^{1, 2}

https://www.google.de/maps

Stops (train-, bus stations)

- Footpaths (walking)
- Lines (train-, bus lines)
- Trips (a vehicle of a line)
- Stop Events (arrival or departure)

- Stops (train-, bus stations)
- Footpaths (walking)
- Lines (train-, bus lines)
- Trips (a vehicle of a line)
- Stop Events (arrival or departure)

- Stops (train-, bus stations)
- Footpaths (walking)
- Lines (train-, bus lines)
- Trips (a vehicle of a line)
- Stop Events (arrival or departure)

- Stops (train-, bus stations)
- Footpaths (walking)
- Lines (train-, bus lines)
- Trips (a vehicle of a line)
- Stop Events (arrival or departure)

<ロ> < 同 > < 同 > < 三 > < 三 > < 回 > < 回 > <

- Stops (train-, bus stations)
- Footpaths (walking)
- Lines (train-, bus lines)
- Trips (a vehicle of a line)
- Stop Events (arrival or departure)

Problem Statement

Definition

Given a source p_{src} , target p_{tgt} and fixed departure time π , find a set of journeys that minimizes the arrival time and number of trips.

 $\pi = 09:00$

- nodes (*stop-events*) represent arrival (or departure) of a vehicle at a stop
- 2 types of edges: trip- and transfer-edges
- Dijkstra too slow

<ロ> < 同> < 同> < 回> < 回> < 回> < 回> < 回>

- nodes (*stop-events*) represent arrival (or departure) of a vehicle at a stop
- 2 types of edges: trip- and transfer-edges
- Dijkstra too slow

- nodes (*stop-events*) represent arrival (or departure) of a vehicle at a stop
- 2 types of edges: trip- and transfer-edges
- Dijkstra too slow

<ロ> < 国> < 国> < 国> < 国> < 国> < 国> < のへの

- nodes (*stop-events*) represent arrival (or departure) of a vehicle at a stop
- 2 types of edges: trip- and transfer-edges
- Dijkstra too slow

- < ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 < 0

Trip-Based Routing [6]

スロッス聞き 人間を入意す 一間 うろの

Trip-Based Routing [6]

スロッス聞き 人間を入意す 一間 うろの

スロッス聞 医生き 医しょうべい

×ロ>×目>×目>×目>×目><</p>

Trip-Based Routing [6]

Public Transit vs. Road

• TB on Germany: \approx 40.8 ms [6]

• Contraction Hierarchies on Europe: \approx 70 μ s [3]

\Rightarrow need for speedup techniques in public transit

<ロ> < 四 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Public Transit vs. Road

- TB on Germany: $\approx 40.8 \, \mathrm{ms}$ [6]
- Contraction Hierarchies on Europe: \approx 70 μ s [3]

 \Rightarrow need for speedup techniques in public transit

- TB on Germany: \approx 40.8 ms [6]
- Contraction Hierarchies on Europe: \approx 70 μ s [3]

\Rightarrow need for speedup techniques in public transit

<ロ> < 同> < 同> < 回> < 回> < 回> < 回> < 回>

- very fast queries
- preprocessing & memory consumption $\Omega\left(|\mathcal{S}|^2\right)$

- very fast queries
- preprocessing & memory consumption $\Omega\left(|\mathcal{S}|^2\right)$

- very fast queries
- preprocessing & memory consumption $\Omega\left(|\mathcal{S}|^2\right)$

- very fast queries
- preprocessing & memory consumption $\Omega\left(|\mathcal{S}|^2\right)$

- very fast queries
- preprocessing & memory consumption $\Omega\left(|\mathcal{S}|^2\right)$

<ロ> < 同> < 同> < 回> < 回> < 回> < 回> < 回>

- idea based on Transfer Patterns [1]
- very fast queries
- preprocessing & memory consumption $\Omega\left(|\mathcal{S}|^2\right)$

- idea based on Transfer Patterns [1]
- very fast queries
- preprocessing & memory consumption $\Omega\left(|\mathcal{S}|^2\right)$

<ロ> < 目 > < 目 > < 目 > < 目 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• performed well on road networks ($\approx 5\,000$)

- manageable memory $\Theta(km), k \ll n$
- Arc-Flags on Time-Expanded Graphs [2]
 - "flagged" trip- and transfer-edges
 - noticed conflicts between some pruning rules
 - speedup of ≈ 4

- performed well on road networks ($\approx 5\,000$)
- manageable memory $\Theta(km), k \ll n$
- Arc-Flags on Time-Expanded Graphs [2]
 - "flagged" trip- and transfer-edges
 - noticed conflicts between some pruning rules
 - speedup of \approx 4

- performed well on road networks ($\approx 5\,000$)
- manageable memory $\Theta(km), k \ll n$
- Arc-Flags on Time-Expanded Graphs [2]
 - "flagged" trip- and transfer-edges
 - noticed conflicts between some pruning rules
 - speedup of pprox 4

<ロ> < 同> < 同> < 回> < 回> < 回> < 回> < 回>

- performed well on road networks (≈ 5000)
- manageable memory $\Theta(km), k \ll n$
- Arc-Flags on Time-Expanded Graphs [2]
 - "flagged" trip- and transfer-edges
 - noticed conflicts between some pruning rules
 - speedup of pprox 4

<ロ> < 同> < 同> < 回> < 回> < 回> < 回> < 回>

- performed well on road networks ($\approx 5\,000$)
- manageable memory $\Theta(km), k \ll n$
- Arc-Flags on Time-Expanded Graphs [2]
 - "flagged" trip- and transfer-edges
 - noticed conflicts between some pruning rules

• speedup of pprox 4

<ロ> < 同> < 同> < 回> < 回> < 回> < 回> < 回>

- performed well on road networks ($\approx 5\,000$)
- manageable memory $\Theta(km), k \ll n$
- Arc-Flags on Time-Expanded Graphs [2]
 - "flagged" trip- and transfer-edges
 - noticed conflicts between some pruning rules
 - speedup of \approx 4

<ロ> < 同> < 同> < 回> < 回> < 回> < 回> < 回>

Key idea: flag transfer edges

- 1 partition stops into k cells
- ② compute flags by performing profile queries
- ③ remove transfer edges with no flags set to true

<ロ> < 同> < 同> < 回> < 回> < 回> < 回> < 回>

Key idea: flag transfer edges

- partition stops into k cells
- 2 compute flags by performing profile queries
- ③ remove transfer edges with no flags set to true
- Query same as TB, but only relax "flagged" transfer edges

<ロ> < 同> < 同> < 回> < 回> < 回> < 回> < 回>

Key idea: flag transfer edges

- partition stops into k cells
- ② compute flags by performing profile queries
- Interpretation in the second state is a set in the second state in the second state is a second state in the second state is a second state in the second state is a second

<ロ> < 同> < 同> < 回> < 回> < 回> < 回> < 回>

Key idea: flag transfer edges

- partition stops into k cells
- ② compute flags by performing profile queries
- remove transfer edges with no flags set to true

Key idea: flag transfer edges

- partition stops into k cells
- ② compute flags by performing profile queries
- remove transfer edges with no flags set to true

メロトメ症とメミトメミト ミニのへの

Results Paris

Results Paris

k	Prepro. [hh:mm:ss]	Query time $[\mu s]$	Scanned trips	Memory [MB]
1	_	3751	20 574	_
64	00:42:23	353	924	429
128	00:42:23	234	580	489
256	00:41:29	161	377	609
512	00:43:06	107	241	849
1 024	00:44:14	76	165	1 330
2048	00:42:48	53	111	2 2 9 1
4 096	00:44:28	39	81	4214

Results Switzerland

300

Speedup

Memory

Results Switzerland

k	Prepro. [hh:mm:ss]	Query time [µs]	Scanned trips	Memory [MB]
1	_	5005	35951	_
2	00:16:13	2001	12142	188
4	00:16:17	1 023	6 2 2 9	188
8	00:15:53	529	3 0 8 2	188
16	00:16:34	281	1 601	192
32	00:15:47	160	846	199
64	00:14:29	107	491	214
128	00:13:24	59	289	244
256	00:12:06	39	172	304
512	00:12:03	28	116	424
1 024	00:11:48	23	87	664
2048	00:11:46	20	69	1 1 4 4
4 0 9 6	00:11:52	17	57	2103

メロトメタトメミトメミト ヨーのへの

Comparison to TB-CST

	Arc-Flag TB		TB-CST	
Network	Query [µs]	Mem [MB]	Query [µs]	Mem [MB]
Germany	140	18923	(156)	114080
Paris	39	4214	507	6992
Sweden	16	2 2 5 0	91	3 400
Switzerland	20	1 1 4 4	66	1 586

Why is it performing so well?

conflicting pruning rules

- Arc-Flags on Time-Expanded Graphs
- TB-CST & Arc-Flag TB (initially)
- we resolve these issues and adapted Arc-Flag TB (and TB-CST)

Why is it performing so well?

<ロ> < 同> < 同> < 回> < 回> < 回> < 回> < 回>

- conflicting pruning rules
 - Arc-Flags on Time-Expanded Graphs
 - TB-CST & Arc-Flag TB (initially)
- we resolve these issues and adapted Arc-Flag TB (and TB-CST)

<ロ> < 同> < 同> < 回> < 回> < 回> < 回> < 回>

- Profile-TB finds the latest trips possible
- TB always enters the earliest trip of a route
- some necessary transfers are not being "flagged"

<ロ> < 同> < 同> < 回> < 回> < 回> < 回> < 回>

Profile-TB finds the latest trips possible

- TB always enters the earliest trip of a route
- some necessary transfers are not being "flagged"

- Profile-TB finds the latest trips possible
- TB always enters the earliest trip of a route

some necessary transfers are not being "flagged"

- Profile-TB finds the latest trips possible
- TB always enters the earliest trip of a route
- some necessary transfers are not being "flagged"

<ロ> < 同> < 同> < 回> < 回> < 回> < 回> < 回>

- Arc-Flags performs excellent in public transit context
- still $\Omega\left(|\mathcal{S}|^2\right)$ preprocessing, but manageable memory
- Arc-Flag TB new state-of-the-art
- Code: github.com/TransitRouting/Arc-FlagTB

Thank you!

<ロ> < 同> < 同> < 回> < 回> < 回> < 回> < 回>

- Arc-Flags performs excellent in public transit context
 still Ω (|S|²) preprocessing, but manageable memory
- Arc-Flag TB new state-of-the-art
- Code: github.com/TransitRouting/Arc-FlagTB

Thank you!

<ロ> < 同> < 同> < 回> < 回> < 回> < 回> < 回>

- Arc-Flags performs excellent in public transit context
- still $\Omega\left(\left|\mathcal{S}\right|^{2}\right)$ preprocessing, but manageable memory
- Arc-Flag TB new state-of-the-art
- Code: github.com/TransitRouting/Arc-FlagTB

<ロ> < 同> < 同> < 回> < 回> < 回> < 回> < 回>

- Arc-Flags performs excellent in public transit context
- still $\Omega\left(\left|\mathcal{S}\right|^{2}\right)$ preprocessing, but manageable memory
- Arc-Flag TB new state-of-the-art
- Code: github.com/TransitRouting/Arc-FlagTB

Thank you!

<ロ> < 同> < 同> < 回> < 回> < 回> < 回> < 回>

- [1] H. Bast, E. Carlsson, A. Eigenwillig, R. Geisberger,
 - C. Harrelson, V. Raychev, and F. Viger. Fast routing in very large public transportation networks using transfer patterns. In M. de Berg and U. Meyer, editors, *Algorithms ESA 2010, 18th Annual European Symposium, Liverpool, UK, September 6-8, 2010. Proceedings, Part I,* volume 6346 of *Lecture Notes in Computer Science*, pages 290–301. Springer, 2010.
- [2] J. Dibbelt, T. Pajor, B. Strasser, and D. Wagner. Connection scan algorithm. *ACM J. Exp. Algorithmics*, 23, 2018.

References II

- [3] R. Geisberger, P. Sanders, D. Schultes, and D. Delling. Contraction hierarchies: Faster and simpler hierarchical routing in road networks. In C. C. McGeoch, editor, *Experimental Algorithms, 7th International Workshop, WEA* 2008, Provincetown, MA, USA, May 30-June 1, 2008, Proceedings, volume 5038 of Lecture Notes in Computer Science, pages 319–333. Springer, 2008.
- [4] R. H. Möhring, H. Schilling, B. Schütz, D. Wagner, and T. Willhalm. Partitioning graphs to speed up dijkstra's algorithm. In S. E. Nikoletseas, editor, *Experimental and Efficient Algorithms, 4th InternationalWorkshop, WEA 2005, Santorini Island, Greece, May 10-13, 2005, Proceedings,* volume 3503 of *Lecture Notes in Computer Science*, pages 189–202. Springer, 2005.

References III

- [5] E. Pyrga, F. Schulz, D. Wagner, and C. D. Zaroliagis. Efficient models for timetable information in public transportation systems. *ACM J. Exp. Algorithmics*, 12:2.4:1–2.4:39, 2007.
- [6] S. Witt. Trip-based public transit routing. In N. Bansal and I. Finocchi, editors, *Algorithms - ESA 2015 - 23rd Annual European Symposium, Patras, Greece, September 14-16,* 2015, Proceedings, volume 9294 of Lecture Notes in Computer Science, pages 1025–1036. Springer, 2015.
- [7] S. Witt. Trip-based public transit routing using condensed search trees. In M. Goerigk and R. F. Werneck, editors, 16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems, ATMOS 2016, August 25, 2016, Aarhus, Denmark, volume 54 of OASIcs, pages 10:1–10:12. Schloss Dagstuhl
 Leibniz-Zentrum für Informatik, 2016.