UNIERSITAT

HEIDELBERG

P
[\ ST 1386
Karlsruhe Institute of Technology

Arc-Flags & Trip-Based Routing

July 2023

Ernestine GroBmann !

2

Jonas Sauer 2 Christian Schulz ! Patrick Steil 1+ 2

L UNIVERSITY OF HEIDELBERG, 2KAF{LSFIUHE INSTITUTE OF TECHNOLOGY

)

-

A ® F & + x

Bt Rmin 2min WO 17min

Universitat Politécnica de Catalunya - Bz
'y
Cathedral of Barcelona, Pla de la Seu, s/

Leave now ~

Options

e 1 ®

Send directions to your phone

3:23PM—3:51PM
to oM #
3:29PM from Palau Reial
#13min every min

Details

3:21PM—4:08PM
"6 ~0D

3:23PM—4:02PM
ioomm om

3:22PM—4:09PM
t @@ o0+

28 min

47 min

39 min

47 min

g “"T‘ ‘@&t‘”‘ 29 aqn%vounu!c
VA7 N

https://www.google.de/maps

https://www.google.de/maps

I Timetable

a Stops ()

I Timetable

a Stops ()
a Footpaths ()

I Timetable

a Stops ()
a Footpaths ()
m Lines ()

I Timetable

a Stops ()
a Footpaths ()

m Lines ()

a Trips ()

I Timetable

a Stops ()

a Footpaths ()

m Lines () .' .
u Trips () R
= Stop Events (T
®08:.00 — ®08:05 — 7 ®08:10 — 7 .- - '

®08:30 — ®08:35 — ®08:40 — 7 ---

®09:00 — ®09:05 — ®09:10 — ---

Problem Statement

Given a source py., target p, and fixed departure time r, find a

set of journeys that minimizes the arrival time and number of
trips.

m = 09:00

y ©09:00 > ©10:00 > ®11:00 _

.
Psre Prgt

\\\} emm T Tl 2 -
©09:00 —> ©09:30 ®10.00 —> ©10:45

Time-Expanded Graph [5]

m nodes (stop-events) represent arrival (or departure) of a
vehicle at a stop

©10:00

®10:15

©10:30

©11:00

©10:20

©10:30
®10:45
©11:00

©11:30

®11:20

©10:40

®11:40

I Time-Expanded Graph [5]

m nodes (stop-events) represent arrival (or departure) of a

vehicle at a stop

m 2 types of edges: trip-

©10:00

®10:15

©10:30

©11:00

®10:10

®10:25

®10:40

®11:10

edges

©10:20 ©10:30

®10:35 — 7 ©10:45

®10:50 — 7 ®11:00

®11:20 ©11:30

AT

©10:40

®11:40

Time-Expanded Graph [5]

m nodes (stop-events) represent arrival (or departure) of a
vehicle at a stop

m 2 types of edges: trip- and transfer-edges

©10:00 ®10:10 ®10:20 ®10:30 ®10:40
| /
1
: /
¥ /
®10:15 ®10:25 - ®10:35 — /7 ®10:45
o y ,
e
o ey
®10:30 ©10:40 ©10:50 < ®11:00
e “u

©11:00 ®11:10 ®11:20 ©11:30 ®11:40

I Time-Expanded Graph [5]

m nodes (stop-events) represent arrival (or departure) of a

vehicle at a stop

m 2 types of edges: trip- and transfer-edges

m Dijkstra too slow

©10:00

®10:15

©10:30

©11:00

®10:10
|

+

®10:25 R

®10:40

®11:10

©10:20 ©10:30
/

/
®10:35 — 77 ®10:45
, ;

S

L
©10:50 <7 ®11:00

M

®11:20 ©11:30

AT

©10:40

®11:40

Trip-Based Routing [6]

©10:00 ?

®i0:15 ———

©10:30 ?

®i1:00 —

®10:10 — 7 ®10:20 — 7 ®10:30 — 7 ®10:40
} /
i 7/
e /
®10:25 7 ®10:35 — 77 ®10:45

~ ’ ’

- N
< <
®10:40 > ®10:50 << ®11:00

L ~

N
e ~
- N
- ~

e \\J
®1:10 — 7 ®11.20 — 7 ®11:30 — 7 ®{1:40

u]
o)
I
ul
it

I Trip-Based Routing [6]

®i0:15 — > ®10:25 — 7 ®10:35 — 7 ®10:45

I Trip-Based Routing [6]

®10:15 — 7 ®1025 —~ ®10:35 — 7 ©10:45

>
.

®10:40

®11:30

I Trip-Based Routing [6]

®10:15 — 7 ®1025 —~ ®10:35 — 7 ©10:45

~ ’

©10:40 S 1050 < ®11.00

~
N
N

N
~

RN
®1130 — ®11:40

I Trip-Based Routing [6]

®10:40 7 ©10:50 7 ©11:00

®11.30 — 7 ®11:40

I Public Transit vs. Road

a TB on Germany: ~ 40.8 ms [6]

I Public Transit vs. Road

a TB on Germany: ~ 40.8 ms [6]
m Contraction Hierarchies on Europe: ~ 70 us [3]

I Public Transit vs. Road NIT @=

a TB on Germany: ~ 40.8 ms [6]
m Contraction Hierarchies on Europe: ~ 70 us [3]

= need for speedup techniques in public transit

I Condensed Search Trees [7] NIT @=

m idea based on Transfer Patterns [1]

B

/\

I Condensed Search Trees [7] NIT @=

m idea based on Transfer Patterns [1]

B

/ Lo
Ly

A C

I Condensed Search Trees [7] NIT @=

m idea based on Transfer Patterns [1]

B

/ Lo
t

A C

I Condensed Search Trees [7]

m idea based on Transfer Patterns [1]

/ L
t

A C

I Condensed Search Trees [7]

m idea based on Transfer Patterns [1]

/ 2
t

A C

I Condensed Search Trees [7] KT @=

m idea based on Transfer Patterns [1]
m very fast queries

B

/ Lo
Ly

A C

Condensed Search Trees [7]

m idea based on Transfer Patterns [1]
m very fast queries

m preprocessing & memory consumption Q (\S|2)

B

/ Lo
Ly

A

C

| Arc-Flags [4] SKIT

o |

’ [F%%%?Ntysm];
[B | WHICH ONE)

AN

.\./\\\/\.

I Arc-Flags [4]

| Arc-Flags [4] KIT

| Arc-Flags [4] KIT

I Arc-Flags [4]

I Arc-Flags [4]

[)
[0,1,0]

PY [)

o o\ o

¢ [1,0,1]
[1,0,1]
[]
[1,0,1]

e <

°
[1,0,0] \[0,0,1]

I Arc-Flags [4]

a performed well on road networks (=~ 5000)

I Arc-Flags [4]

a performed well on road networks (=~ 5000)
m manageable memory © (km), k < n

I Arc-Flags [4]

a performed well on road networks (=~ 5000)

m manageable memory © (km), k < n
a Arc-Flags on Time-Expanded Graphs [2]

I Arc-Flags [4]

a performed well on road networks (=~ 5000)

m manageable memory © (km), k < n
a Arc-Flags on Time-Expanded Graphs [2]
a “flagged” trip- and transfer-edges

I Arc-Flags [4]

a performed well on road networks (=~ 5000)
m manageable memory © (km), k < n

a Arc-Flags on Time-Expanded Graphs [2]

a “flagged” trip- and transfer-edges
m noticed conflicts between some pruning rules

I Arc-Flags [4]

a performed well on road networks (=~ 5000)

m manageable memory © (km), k < n
a Arc-Flags on Time-Expanded Graphs [2]

a “flagged” trip- and transfer-edges
m noticed conflicts between some pruning rules
a speedup of ~ 4

I Arc-Flag TB

Key idea: flag transfer edges

I Arc-Flag TB

Key idea: flag transfer edges
@ partition stops into k cells

I Arc-Flag TB

Key idea: flag transfer edges
@ partition stops into k cells
@ compute flags by performing profile queries

I Arc-Flag TB

Key idea: flag transfer edges
@ partition stops into k cells
@ compute flags by performing profile queries
@ remove transfer edges with no flags set to true

I Arc-Flag TB

Key idea: flag transfer edges
@ partition stops into k cells
@ compute flags by performing profile queries
@ remove transfer edges with no flags set to true
Query same as TB, but only relax “flagged” transfer edges

I Results Paris T

Memory

Speedup

Speedup

0 26 o7 28 29 210 o211 o212 0 o6 o7 28 29 9210 o1l 912

I Results Paris T .

k [hifslﬂ?s'sl Q”e'[z's]t'me Scanned trips M&né’]ry

1 - 3751 20574 -

64 00:42:23 353 924 429
128 00:42:23 234 580 489
256 00:41:29 161 377 609
512 00:43:06 107 241 849
1024 00:44:14 76 165 1330
2048 00:42:48 53 111 2291

4096 00:44:28 39 81 4214

I Results Switzerland

Speedup Memory
L B T
300
2,000 |- N
o L 1
& 200 1,500
:
1 L i
& £ ,000
100 =
500 - :
21 92 93 04 95 96 o7 98 29910011512 0 21 92 93 04 95 96 27 98 99910011512
k k

u]
o)
I
ul
it

I Results Switzerland

k [hirif;is] Q“e[;z's]“me Scanned trips ME\'/E;W

1 - 5005 35951 -

2 00:16:13 2001 12142 188

4 00:16:17 1023 6229 188

8 00:15:53 529 3082 188

16 00:16:34 281 1601 192
32 00:15:47 160 846 199
64 00:14:29 107 491 214
128 00:13:24 59 289 244
256 00:12:06 39 172 304
512 00:12:03 28 116 424
1024 00:11:48 23 87 664
2048 00:11:46 20 69 1144

4096 00:11:52 17 57 2103

I Comparison to TB-CST T .

Arc-Flag TB TB-CST
Network Query Mem Query Mem
[115] [MB] (5] [MB]
Germany 140 18923 (156) 114080
Paris 39 4214 507 6992
Sweden 16 2250 91 3400

Switzerland 20 1144 66 1586

I Why is it performing so well?

a conflicting pruning rules

m Arc-Flags on Time-Expanded Graphs
a TB-CST & Arc-Flag TB (initially)

Why is it performing so well? XIT @=

a conflicting pruning rules
m Arc-Flags on Time-Expanded Graphs
a TB-CST & Arc-Flag TB (initially)
m we resolve these issues and adapted Arc-Flag TB (and
TB-CST)

I Profile- vs Fixed Departure Queries

®15:00 > ©16:00

A
-7 7
p

©09:00 ©08:30 ®09:45 ®10:00 e

©08:00 ©08:30 ©08:45 ©09:00

I Profile- vs Fixed Departure Queries

a Profile-TB finds the latest trips possible

®15:00 > ©16:00
P

©09:00 ©08:30 ®09:45 ®10:00

I Profile- vs Fixed Departure Queries

a Profile-TB finds the latest trips possible
m TB always enters the earliest trip of a route

®15:00 > ©16:00
A

©08:00 ©08:30 ©08:45 ©09:00

I Profile- vs Fixed Departure Queries

a Profile-TB finds the latest trips possible
m TB always enters the earliest trip of a route
m some necessary transfers are not being “flagged”

®15:00 > ©16:00

A
-7 7
.

©09:00 ©08:30 ®09:45 ®10:00

©08:00 ©08:30 ©08:45 ©09:00

I Conclusion

a Arc-Flags performs excellent in public transit context

https://github.com/TransitRouting/Arc-FlagTB

I Conclusion

a Arc-Flags performs excellent in public transit context

a still Q (\812) preprocessing, but manageable memory

https://github.com/TransitRouting/Arc-FlagTB

I Conclusion

a Arc-Flags performs excellent in public transit context
a still Q (\812) preprocessing, but manageable memory

a Arc-Flag TB new state-of-the-art
a Code: github.com/TransitRouting/Arc-FlagTB

https://github.com/TransitRouting/Arc-FlagTB

I Conclusion XIT @=

a Arc-Flags performs excellent in public transit context
a still Q (\812) preprocessing, but manageable memory

a Arc-Flag TB new state-of-the-art
a Code: github.com/TransitRouting/Arc-FlagTB

Thank you!

https://github.com/TransitRouting/Arc-FlagTB

I References | KIT 0=

[1] H. Bast, E. Carlsson, A. Eigenwillig, R. Geisberger,
C. Harrelson, V. Raychev, and F. Viger. Fast routing in very
large public transportation networks using transfer patterns.
In M. de Berg and U. Meyer, editors, Algorithms - ESA
2010, 18th Annual European Symposium, Liverpool, UK,
September 6-8, 2010. Proceedings, Part I, volume 6346 of
Lecture Notes in Computer Science, pages 290-301.
Springer, 2010.

[2] J. Dibbelt, T. Pajor, B. Strasser, and D. Wagner. Connection
scan algorithm. ACM J. Exp. Algorithmics, 23, 2018.

I References I NIT @ =

[3] R. Geisberger, P. Sanders, D. Schultes, and D. Delling.

[4]

Contraction hierarchies: Faster and simpler hierarchical
routing in road networks. In C. C. McGeoch, editor,
Experimental Algorithms, 7th International Workshop, WEA
2008, Provincetown, MA, USA, May 30-June 1, 2008,
Proceedings, volume 5038 of Lecture Notes in Computer
Science, pages 319-333. Springer, 2008.

R. H. Méhring, H. Schilling, B. Schitz, D. Wagner, and

T. Willhalm. Partitioning graphs to speed up dijkstra’s
algorithm. In S. E. Nikoletseas, editor, Experimental and
Efficient Algorithms, 4th InternationalWorkshop, WEA 2005,
Santorini Island, Greece, May 10-13, 2005, Proceedings,
volume 3503 of Lecture Notes in Computer Science, pages
189-202. Springer, 2005.

I References lli T .

[5]

[6]

[7]

E. Pyrga, F. Schulz, D. Wagner, and C. D. Zaroliagis.
Efficient models for timetable information in public
transportation systems. ACM J. Exp. Algorithmics,
12:2.4:1-2.4:39, 2007.

S. Witt. Trip-based public transit routing. In N. Bansal and
I. Finocchi, editors, Algorithms - ESA 2015 - 23rd Annual
European Symposium, Patras, Greece, September 14-16,
2015, Proceedings, volume 9294 of Lecture Notes in
Computer Science, pages 1025-1036. Springer, 2015.

S. Witt. Trip-based public transit routing using condensed
search trees. In M. Goerigk and R. F. Werneck, editors,
16th Workshop on Algorithmic Approaches for
Transportation Modelling, Optimization, and Systems,
ATMOS 2016, August 25, 2016, Aarhus, Denmark,

volume 54 of OASIcs, pages 10:1—-10:12. Schloss Dagstuhl
- Leibniz-Zentrum fir Informatik, 2016.

	References

