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Problem Statement

Definition
Given a source psrc, target ptgt and fixed departure time π, find a
set of journeys that minimizes the arrival time and number of
trips.

π = 09:00

•09:00 •10:00 •11:00

psrc ptgt

•09:00 •09:30 •10:00 •10:45



Time-Expanded Graph [5]

nodes (stop-events) represent arrival (or departure) of a
vehicle at a stop
2 types of edges: trip- and transfer -edges
Dijkstra too slow
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Public Transit vs. Road

TB on Germany: ≈ 40.8 ms [6]
Contraction Hierarchies on Europe: ≈ 70µs [3]

⇒ need for speedup techniques in public transit
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Arc-Flags [4]

performed well on road networks (≈ 5 000)
manageable memory Θ(km) , k ≪ n
Arc-Flags on Time-Expanded Graphs [2]

“flagged” trip- and transfer-edges
noticed conflicts between some pruning rules
speedup of ≈ 4
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Results Paris

k Prepro.
[hh:mm:ss]

Query time
[µs]

Scanned trips Memory
[MB]

1 – 3 751 20 574 –
64 00:42:23 353 924 429

128 00:42:23 234 580 489
256 00:41:29 161 377 609
512 00:43:06 107 241 849

1 024 00:44:14 76 165 1 330
2 048 00:42:48 53 111 2 291
4 096 00:44:28 39 81 4 214
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Results Switzerland

k Prepro.
[hh:mm:ss]

Query time
[µs]

Scanned trips Memory
[MB]

1 – 5 005 35 951 –
2 00:16:13 2 001 12 142 188
4 00:16:17 1 023 6 229 188
8 00:15:53 529 3 082 188

16 00:16:34 281 1 601 192
32 00:15:47 160 846 199
64 00:14:29 107 491 214

128 00:13:24 59 289 244
256 00:12:06 39 172 304
512 00:12:03 28 116 424

1 024 00:11:48 23 87 664
2 048 00:11:46 20 69 1 144
4 096 00:11:52 17 57 2 103



Comparison to TB-CST

Network

Arc-Flag TB TB-CST

Query
[µs]

Mem
[MB]

Query
[µs]

Mem
[MB]

Germany 140 18 923 (156) 114 080
Paris 39 4 214 507 6 992
Sweden 16 2 250 91 3 400
Switzerland 20 1 144 66 1 586



Why is it performing so well?

conflicting pruning rules
Arc-Flags on Time-Expanded Graphs
TB-CST & Arc-Flag TB (initially)

we resolve these issues and adapted Arc-Flag TB (and
TB-CST)
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Profile- vs Fixed Departure Queries

Profile-TB finds the latest trips possible
TB always enters the earliest trip of a route
some necessary transfers are not being “flagged”
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Conclusion

Arc-Flags performs excellent in public transit context

still Ω
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preprocessing, but manageable memory

Arc-Flag TB new state-of-the-art
Code: github.com/TransitRouting/Arc-FlagTB

Thank you!
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