
1 UNIVERSITY OF HEIDELBERG, 2 KARLSRUHE INSTITUTE OF TECHNOLOGY

Arc-Flags & Trip-Based Routing
July 2023

Ernestine Großmann 1 Jonas Sauer 2 Christian Schulz 1 Patrick Steil 1, 2

https://www.google.de/maps

https://www.google.de/maps

Timetable

Stops (train-, bus stations)
Footpaths (walking)
Lines (train-, bus lines)
Trips (a vehicle of a line)
Stop Events (arrival or
departure)

•08:00 •08:05 •08:10 . . .

•08:30 •08:35 •08:40 . . .

•09:00 •09:05 •09:10 . . .

Timetable

Stops (train-, bus stations)
Footpaths (walking)
Lines (train-, bus lines)
Trips (a vehicle of a line)
Stop Events (arrival or
departure)

•08:00 •08:05 •08:10 . . .

•08:30 •08:35 •08:40 . . .

•09:00 •09:05 •09:10 . . .

Timetable

Stops (train-, bus stations)
Footpaths (walking)
Lines (train-, bus lines)
Trips (a vehicle of a line)
Stop Events (arrival or
departure)

•08:00 •08:05 •08:10 . . .

•08:30 •08:35 •08:40 . . .

•09:00 •09:05 •09:10 . . .

Timetable

Stops (train-, bus stations)
Footpaths (walking)
Lines (train-, bus lines)
Trips (a vehicle of a line)
Stop Events (arrival or
departure)

•08:00 •08:05 •08:10 . . .

•08:30 •08:35 •08:40 . . .

•09:00 •09:05 •09:10 . . .

Timetable

Stops (train-, bus stations)
Footpaths (walking)
Lines (train-, bus lines)
Trips (a vehicle of a line)
Stop Events (arrival or
departure)

•08:00 •08:05 •08:10 . . .

•08:30 •08:35 •08:40 . . .

•09:00 •09:05 •09:10 . . .

Problem Statement

Definition
Given a source psrc, target ptgt and fixed departure time π, find a
set of journeys that minimizes the arrival time and number of
trips.

π = 09:00

•09:00 •10:00 •11:00

psrc ptgt

•09:00 •09:30 •10:00 •10:45

Time-Expanded Graph [5]

nodes (stop-events) represent arrival (or departure) of a
vehicle at a stop
2 types of edges: trip- and transfer -edges
Dijkstra too slow

•10:00 •10:10 •10:20 •10:30 •10:40

•10:15 •10:25 •10:35 •10:45

•10:30 •10:40 •10:50 •11:00

•11:00 •11:10 •11:20 •11:30 •11:40

Time-Expanded Graph [5]

nodes (stop-events) represent arrival (or departure) of a
vehicle at a stop
2 types of edges: trip- and transfer -edges
Dijkstra too slow

•10:00 •10:10 •10:20 •10:30 •10:40

•10:15 •10:25 •10:35 •10:45

•10:30 •10:40 •10:50 •11:00

•11:00 •11:10 •11:20 •11:30 •11:40

Time-Expanded Graph [5]

nodes (stop-events) represent arrival (or departure) of a
vehicle at a stop
2 types of edges: trip- and transfer -edges
Dijkstra too slow

•10:00 •10:10 •10:20 •10:30 •10:40

•10:15 •10:25 •10:35 •10:45

•10:30 •10:40 •10:50 •11:00

•11:00 •11:10 •11:20 •11:30 •11:40

Time-Expanded Graph [5]

nodes (stop-events) represent arrival (or departure) of a
vehicle at a stop
2 types of edges: trip- and transfer -edges
Dijkstra too slow

•10:00 •10:10 •10:20 •10:30 •10:40

•10:15 •10:25 •10:35 •10:45

•10:30 •10:40 •10:50 •11:00

•11:00 •11:10 •11:20 •11:30 •11:40

Trip-Based Routing [6]

•10:00 •10:10 •10:20 •10:30 •10:40

•10:15 •10:25 •10:35 •10:45

•10:30 •10:40 •10:50 •11:00

•11:00 •11:10 •11:20 •11:30 •11:40

Trip-Based Routing [6]

•10:00 •10:10 •10:20 •10:30 •10:40

•10:15 •10:25 •10:35 •10:45

•10:30 •10:40 •10:50 •11:00

•11:00 •11:10 •11:20 •11:30 •11:40

Trip-Based Routing [6]

•10:00 •10:10 •10:20 •10:30 •10:40

•10:15 •10:25 •10:35 •10:45

•10:30 •10:40 •10:50 •11:00

•11:00 •11:10 •11:20 •11:30 •11:40

Trip-Based Routing [6]

•10:00 •10:10 •10:20 •10:30 •10:40

•10:15 •10:25 •10:35 •10:45

•10:30 •10:40 •10:50 •11:00

•11:00 •11:10 •11:20 •11:30 •11:40

Trip-Based Routing [6]

•10:00 •10:10 •10:20 •10:30 •10:40

•10:15 •10:25 •10:35 •10:45

•10:30 •10:40 •10:50 •11:00

•11:00 •11:10 •11:20 •11:30 •11:40

Public Transit vs. Road

TB on Germany: ≈ 40.8 ms [6]
Contraction Hierarchies on Europe: ≈ 70µs [3]

⇒ need for speedup techniques in public transit

Public Transit vs. Road

TB on Germany: ≈ 40.8 ms [6]
Contraction Hierarchies on Europe: ≈ 70µs [3]

⇒ need for speedup techniques in public transit

Public Transit vs. Road

TB on Germany: ≈ 40.8 ms [6]
Contraction Hierarchies on Europe: ≈ 70µs [3]

⇒ need for speedup techniques in public transit

Condensed Search Trees [7]

idea based on Transfer Patterns [1]
very fast queries

preprocessing & memory consumption Ω
(
|S|2

)
B

A C

Condensed Search Trees [7]

idea based on Transfer Patterns [1]
very fast queries

preprocessing & memory consumption Ω
(
|S|2

)
B

A C

L3 L2

L1

Condensed Search Trees [7]

idea based on Transfer Patterns [1]
very fast queries

preprocessing & memory consumption Ω
(
|S|2

)
B

A C

L3 L2

t1

Condensed Search Trees [7]

idea based on Transfer Patterns [1]
very fast queries

preprocessing & memory consumption Ω
(
|S|2

)
B

A C

t3 L2

t1

Condensed Search Trees [7]

idea based on Transfer Patterns [1]
very fast queries

preprocessing & memory consumption Ω
(
|S|2

)
B

A C

t3 t2

t1

Condensed Search Trees [7]

idea based on Transfer Patterns [1]
very fast queries

preprocessing & memory consumption Ω
(
|S|2

)
B

A C

L3 L2

L1

Condensed Search Trees [7]

idea based on Transfer Patterns [1]
very fast queries

preprocessing & memory consumption Ω
(
|S|2

)
B

A C

L3 L2

L1

Arc-Flags [4]

Arc-Flags [4]

•

• •

•

•

• •

•

Arc-Flags [4]

•

• •

•

•

• •

•

Arc-Flags [4]

•

• •

•

•

• •

•

[1,0,1]

Arc-Flags [4]

•

• •

•

•

• •

•

[1,0,1]

Arc-Flags [4]

•

• •

•

•

• •

•

[1,0,0]

[1,0,1]

[1,0,1]

Arc-Flags [4]

•

• •

•

•

• •

•

[1,0,0]

[1,0,1]

[1,0,0]

[1,0,1]

[1,0,1]

[1,0,1]

[1,0,0] [1,0,1]

[0,1,0]

[0,0,1]

Arc-Flags [4]

performed well on road networks (≈ 5 000)
manageable memory Θ(km) , k ≪ n
Arc-Flags on Time-Expanded Graphs [2]

“flagged” trip- and transfer-edges
noticed conflicts between some pruning rules
speedup of ≈ 4

Arc-Flags [4]

performed well on road networks (≈ 5 000)
manageable memory Θ(km) , k ≪ n
Arc-Flags on Time-Expanded Graphs [2]

“flagged” trip- and transfer-edges
noticed conflicts between some pruning rules
speedup of ≈ 4

Arc-Flags [4]

performed well on road networks (≈ 5 000)
manageable memory Θ(km) , k ≪ n
Arc-Flags on Time-Expanded Graphs [2]

“flagged” trip- and transfer-edges
noticed conflicts between some pruning rules
speedup of ≈ 4

Arc-Flags [4]

performed well on road networks (≈ 5 000)
manageable memory Θ(km) , k ≪ n
Arc-Flags on Time-Expanded Graphs [2]

“flagged” trip- and transfer-edges
noticed conflicts between some pruning rules
speedup of ≈ 4

Arc-Flags [4]

performed well on road networks (≈ 5 000)
manageable memory Θ(km) , k ≪ n
Arc-Flags on Time-Expanded Graphs [2]

“flagged” trip- and transfer-edges
noticed conflicts between some pruning rules
speedup of ≈ 4

Arc-Flags [4]

performed well on road networks (≈ 5 000)
manageable memory Θ(km) , k ≪ n
Arc-Flags on Time-Expanded Graphs [2]

“flagged” trip- and transfer-edges
noticed conflicts between some pruning rules
speedup of ≈ 4

Arc-Flag TB

Key idea: flag transfer edges
1 partition stops into k cells
2 compute flags by performing profile queries
3 remove transfer edges with no flags set to true

Query same as TB, but only relax “flagged” transfer edges

Arc-Flag TB

Key idea: flag transfer edges
1 partition stops into k cells
2 compute flags by performing profile queries
3 remove transfer edges with no flags set to true

Query same as TB, but only relax “flagged” transfer edges

Arc-Flag TB

Key idea: flag transfer edges
1 partition stops into k cells
2 compute flags by performing profile queries
3 remove transfer edges with no flags set to true

Query same as TB, but only relax “flagged” transfer edges

Arc-Flag TB

Key idea: flag transfer edges
1 partition stops into k cells
2 compute flags by performing profile queries
3 remove transfer edges with no flags set to true

Query same as TB, but only relax “flagged” transfer edges

Arc-Flag TB

Key idea: flag transfer edges
1 partition stops into k cells
2 compute flags by performing profile queries
3 remove transfer edges with no flags set to true

Query same as TB, but only relax “flagged” transfer edges

Results Paris

26 27 28 29 210 211 212
0

20

40

60

80

100

k

S
pe

ed
up

Speedup

26 27 28 29 210 211 212
0

1,000

2,000

3,000

4,000

k

M
em

or
y
[M

B
]

Memory

Results Paris

k Prepro.
[hh:mm:ss]

Query time
[µs]

Scanned trips Memory
[MB]

1 – 3 751 20 574 –
64 00:42:23 353 924 429

128 00:42:23 234 580 489
256 00:41:29 161 377 609
512 00:43:06 107 241 849

1 024 00:44:14 76 165 1 330
2 048 00:42:48 53 111 2 291
4 096 00:44:28 39 81 4 214

Results Switzerland

21 22 23 24 25 26 27 28 29 210211212
0

100

200

300

k

S
pe

ed
up

Speedup

21 22 23 24 25 26 27 28 29 210211212
0

500

1,000

1,500

2,000

k

M
em

or
y
[M

B
]

Memory

Results Switzerland

k Prepro.
[hh:mm:ss]

Query time
[µs]

Scanned trips Memory
[MB]

1 – 5 005 35 951 –
2 00:16:13 2 001 12 142 188
4 00:16:17 1 023 6 229 188
8 00:15:53 529 3 082 188

16 00:16:34 281 1 601 192
32 00:15:47 160 846 199
64 00:14:29 107 491 214

128 00:13:24 59 289 244
256 00:12:06 39 172 304
512 00:12:03 28 116 424

1 024 00:11:48 23 87 664
2 048 00:11:46 20 69 1 144
4 096 00:11:52 17 57 2 103

Comparison to TB-CST

Network

Arc-Flag TB TB-CST

Query
[µs]

Mem
[MB]

Query
[µs]

Mem
[MB]

Germany 140 18 923 (156) 114 080
Paris 39 4 214 507 6 992
Sweden 16 2 250 91 3 400
Switzerland 20 1 144 66 1 586

Why is it performing so well?

conflicting pruning rules
Arc-Flags on Time-Expanded Graphs
TB-CST & Arc-Flag TB (initially)

we resolve these issues and adapted Arc-Flag TB (and
TB-CST)

Why is it performing so well?

conflicting pruning rules
Arc-Flags on Time-Expanded Graphs
TB-CST & Arc-Flag TB (initially)

we resolve these issues and adapted Arc-Flag TB (and
TB-CST)

Profile- vs Fixed Departure Queries

Profile-TB finds the latest trips possible
TB always enters the earliest trip of a route
some necessary transfers are not being “flagged”

•15:00 •16:00

•09:00 •08:30 •09:45 •10:00

•08:00 •08:30 •08:45 •09:00

Profile- vs Fixed Departure Queries

Profile-TB finds the latest trips possible
TB always enters the earliest trip of a route
some necessary transfers are not being “flagged”

•15:00 •16:00

•09:00 •08:30 •09:45 •10:00

•08:00 •08:30 •08:45 •09:00

Profile- vs Fixed Departure Queries

Profile-TB finds the latest trips possible
TB always enters the earliest trip of a route
some necessary transfers are not being “flagged”

•15:00 •16:00

•09:00 •08:30 •09:45 •10:00

•08:00 •08:30 •08:45 •09:00

Profile- vs Fixed Departure Queries

Profile-TB finds the latest trips possible
TB always enters the earliest trip of a route
some necessary transfers are not being “flagged”

•15:00 •16:00

•09:00 •08:30 •09:45 •10:00

•08:00 •08:30 •08:45 •09:00

Conclusion

Arc-Flags performs excellent in public transit context

still Ω
(
|S|2

)
preprocessing, but manageable memory

Arc-Flag TB new state-of-the-art
Code: github.com/TransitRouting/Arc-FlagTB

Thank you!

https://github.com/TransitRouting/Arc-FlagTB

Conclusion

Arc-Flags performs excellent in public transit context

still Ω
(
|S|2

)
preprocessing, but manageable memory

Arc-Flag TB new state-of-the-art
Code: github.com/TransitRouting/Arc-FlagTB

Thank you!

https://github.com/TransitRouting/Arc-FlagTB

Conclusion

Arc-Flags performs excellent in public transit context

still Ω
(
|S|2

)
preprocessing, but manageable memory

Arc-Flag TB new state-of-the-art
Code: github.com/TransitRouting/Arc-FlagTB

Thank you!

https://github.com/TransitRouting/Arc-FlagTB

Conclusion

Arc-Flags performs excellent in public transit context

still Ω
(
|S|2

)
preprocessing, but manageable memory

Arc-Flag TB new state-of-the-art
Code: github.com/TransitRouting/Arc-FlagTB

Thank you!

https://github.com/TransitRouting/Arc-FlagTB

References I

[1] H. Bast, E. Carlsson, A. Eigenwillig, R. Geisberger,
C. Harrelson, V. Raychev, and F. Viger. Fast routing in very
large public transportation networks using transfer patterns.
In M. de Berg and U. Meyer, editors, Algorithms - ESA
2010, 18th Annual European Symposium, Liverpool, UK,
September 6-8, 2010. Proceedings, Part I, volume 6346 of
Lecture Notes in Computer Science, pages 290–301.
Springer, 2010.

[2] J. Dibbelt, T. Pajor, B. Strasser, and D. Wagner. Connection
scan algorithm. ACM J. Exp. Algorithmics, 23, 2018.

References II

[3] R. Geisberger, P. Sanders, D. Schultes, and D. Delling.
Contraction hierarchies: Faster and simpler hierarchical
routing in road networks. In C. C. McGeoch, editor,
Experimental Algorithms, 7th International Workshop, WEA
2008, Provincetown, MA, USA, May 30-June 1, 2008,
Proceedings, volume 5038 of Lecture Notes in Computer
Science, pages 319–333. Springer, 2008.

[4] R. H. Möhring, H. Schilling, B. Schütz, D. Wagner, and
T. Willhalm. Partitioning graphs to speed up dijkstra’s
algorithm. In S. E. Nikoletseas, editor, Experimental and
Efficient Algorithms, 4th InternationalWorkshop, WEA 2005,
Santorini Island, Greece, May 10-13, 2005, Proceedings,
volume 3503 of Lecture Notes in Computer Science, pages
189–202. Springer, 2005.

References III

[5] E. Pyrga, F. Schulz, D. Wagner, and C. D. Zaroliagis.
Efficient models for timetable information in public
transportation systems. ACM J. Exp. Algorithmics,
12:2.4:1–2.4:39, 2007.

[6] S. Witt. Trip-based public transit routing. In N. Bansal and
I. Finocchi, editors, Algorithms - ESA 2015 - 23rd Annual
European Symposium, Patras, Greece, September 14-16,
2015, Proceedings, volume 9294 of Lecture Notes in
Computer Science, pages 1025–1036. Springer, 2015.

[7] S. Witt. Trip-based public transit routing using condensed
search trees. In M. Goerigk and R. F. Werneck, editors,
16th Workshop on Algorithmic Approaches for
Transportation Modelling, Optimization, and Systems,
ATMOS 2016, August 25, 2016, Aarhus, Denmark,
volume 54 of OASIcs, pages 10:1–10:12. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2016.

	References

