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Problem Statement

Given a source py., target p, and fixed departure time r, find a

set of journeys that minimizes the arrival time and number of
trips.
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Time-Expanded Graph [5]

m nodes (stop-events) represent arrival (or departure) of a
vehicle at a stop
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Time-Expanded Graph [5]

m nodes (stop-events) represent arrival (or departure) of a
vehicle at a stop

m 2 types of edges: trip- and transfer-edges
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I Time-Expanded Graph [5]

m nodes (stop-events) represent arrival (or departure) of a

vehicle at a stop

m 2 types of edges: trip- and transfer-edges

m Dijkstra too slow
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Trip-Based Routing [6]
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I Trip-Based Routing [6]
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I Trip-Based Routing [6]
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I Public Transit vs. Road NIT @=

a TB on Germany: ~ 40.8 ms [6]
m Contraction Hierarchies on Europe: ~ 70 us [3]

= need for speedup techniques in public transit
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Condensed Search Trees [7]

m idea based on Transfer Patterns [1]
m very fast queries

m preprocessing & memory consumption Q (\S|2)
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a performed well on road networks (=~ 5000)

m manageable memory © (km), k < n
a Arc-Flags on Time-Expanded Graphs [2]

a “flagged” trip- and transfer-edges
m noticed conflicts between some pruning rules
a speedup of ~ 4
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I Arc-Flag TB

Key idea: flag transfer edges
@ partition stops into k cells
@ compute flags by performing profile queries
@ remove transfer edges with no flags set to true
Query same as TB, but only relax “flagged” transfer edges
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I Results Paris T .

k [hifslﬂ?s'sl Q”e'[z's]t'me Scanned trips M&né’]ry

1 - 3751 20574 -

64 00:42:23 353 924 429
128 00:42:23 234 580 489
256 00:41:29 161 377 609
512 00:43:06 107 241 849
1024 00:44:14 76 165 1330
2048 00:42:48 53 111 2291

4096 00:44:28 39 81 4214
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I Results Switzerland

k [hirif;is] Q“e[;z's]“me Scanned trips ME\'/E;W

1 - 5005 35951 -

2 00:16:13 2001 12142 188

4 00:16:17 1023 6229 188

8 00:15:53 529 3082 188

16 00:16:34 281 1601 192
32 00:15:47 160 846 199
64 00:14:29 107 491 214
128 00:13:24 59 289 244
256 00:12:06 39 172 304
512 00:12:03 28 116 424
1024 00:11:48 23 87 664
2048 00:11:46 20 69 1144

4096 00:11:52 17 57 2103




I Comparison to TB-CST T .

Arc-Flag TB TB-CST
Network Query Mem Query Mem
[115] [MB] (5] [MB]
Germany 140 18923 (156) 114080
Paris 39 4214 507 6992
Sweden 16 2250 91 3400

Switzerland 20 1144 66 1586




I Why is it performing so well?

a conflicting pruning rules

m Arc-Flags on Time-Expanded Graphs
a TB-CST & Arc-Flag TB (initially)



Why is it performing so well? XIT @=

a conflicting pruning rules
m Arc-Flags on Time-Expanded Graphs
a TB-CST & Arc-Flag TB (initially)
m we resolve these issues and adapted Arc-Flag TB (and
TB-CST)
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I Profile- vs Fixed Departure Queries

a Profile-TB finds the latest trips possible
m TB always enters the earliest trip of a route
m some necessary transfers are not being “flagged”
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I Conclusion XIT @=

a Arc-Flags performs excellent in public transit context
a still Q (\812) preprocessing, but manageable memory

a Arc-Flag TB new state-of-the-art
a Code: github.com/TransitRouting/Arc-FlagTB

Thank you!


https://github.com/TransitRouting/Arc-FlagTB
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